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The present work develops a novel hybrid method for ocular and muscular artifact removal
from electroencephalography (EEG) signals, EFICA-TQWT. It is a combination of efficient fast
independent component analysis (EFICA) method with the tunable Q-factor wavelet transform
(TQWT). The main contribution of this paper is to apply the 3D interpolation method in the filtering
system. Three EEG datasets are used in this work, two healthy and one epileptic. The choice of
subjects for each dataset is made with the help of an expert in physiology. The selection criterion
adopted is the presence of muscular and ocular artifacts in the processed recordings. First, a noisy
channel automatic classification is performed by the support vector machine (SVM) with radial basis
function in order to delete the signal(s) corresponding to the noisiest channel(s) from each EEG
recording. The results of the automatic classification by the SVM were compared with those found
by the expert’s classification. An accuracy of 97.45%, a sensitivity of 86.66% and a 100% specificity
are provided by the SVM classification. The hybrid method of artifact removal will be applied on
the rest of the EEG channels of international 10/20 system for each subject. Then, a reconstruction
of the eliminated channel signal(s) will be performed in order to obtain a well-filtered signal. The
proposed filtering process is evaluated by calculating the mean squared error (MSE) and the signal
to noise ratio (SNR). Both for the healthy and pathological EEG datasets, a comparative study of
the proposed method (EFICA-TQWT) and other filtering techniques (Fast-ICA, DWT, TQWT and
EFICA) is generated. The EFICA-TQWT method gave the best results with a minimum of MSE and
a maximum of SNR, more particularly in the case of the application of the 3D interpolation method.
Besides, in order to optimize the computing time of the proposed system, a parallel implementation
of this filtering system is developed based on graphical processing units using compute unified device

architecture.
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1. INTRODUCTION

The electroencephalography (EEG) involves measuring the
electrical activity of the brain using electrodes placed on the
surface of the scalp. The number and configuration of these

electrodes have a significant influence on all recording results.
The use of a single electrode allows the recording of a small
part of the cortical activity, whereas the simultaneous recording
of many channels provides an overall representation of the
neuronal electrical activity. These EEG recordings are mainly
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used by the neurologist for detection of some grapho-elements
(slow waves and spikes) and for diagnosis of tumors, epilepsy
and other medical conditions [1, 2].

Recently, the EEG has played a great role in brain computer
interface (BCI) applications [3]. Unfortunately, these EEG
signals can be heavily contaminated by spurious signals called
artifacts, which have their main origins in ocular activity, mus-
cle activity, heart rate and slight electrode movements [4, 5]. In
fact, the two physiological artifacts that are most problematic
for BCI applications are the ocular (OA) and muscular artifacts
(MA) [6]. Ocular artifacts are either generated by the eye
rolling or eye blinks that occur ∼20 times per minute [7]. This
type of artifacts is located mostly in the anterior head regions
with a maximal frequency range below 4 Hz. However, the
muscular artifacts are characterized by a high-frequency range
superior to 20 Hz with amplitudes varying from small to very
large [8].

The presence of these artifacts hides the real forms of EEG
signals. This results in misdiagnosis with a great risk of defec-
tive drugs or inadequate therapeutic protocols [9].

In order to have a real and clear image of brain activities
and to facilitate the analysis of this type of signals, the arti-
fact removal methods will be an urgent necessity in order to
overcome the traditional EEG examination difficulties. These
methods, which rely on the separation of sources, allow the
determination of a set of cerebral origin sources and a set of
artifact sources. The artifact sources are removed and the brain
sources are used to reconstruct the signal.

In this context, many works have been conducted. More par-
ticularly, several studies have been interested in removing the
ocular and muscular artifacts. For example, in [10] the authors
proposed an artificial neural network (ANN) method to classify
the artifactual and non-artifactual EEG dataset. Furthermore,
they developed a novel time-amplitude algorithm for detecting
the presence of eye movement artifact and multiple contami-
nated zones. Other works for artifact removal were performed
based on blind source separation (BSS) [11] and including
the older different versions of independent component analysis
(ICA) algorithms [12, 13]. In fact, contrary to the regression
methods, artifact removal methods based on ICA algorithm can
conserve data on all scalp channels including frontal and partic-
ular locations [14]. As an example of artifact removal by ICA
techniques, the work of [11] proposed to utilize the algorithm
for multiple unknown source extraction and ICA–Infomax
methods in order to isolate artifacts from 3-second EEG epochs.

Another artifact removal method based on stationary wavelet
transform (SWT) was proposed to remove ocular artifacts from
EEG signals [15, 16]. In these works, the SWT coefficients that
correspond to the lower frequency ranges undergo a process of
thresholding. Furthermore, the works of [17] proposed a hybrid
brain-computer interface system based on the SWT combined
with a novel adaptive thresholding mechanism to remove ocular
and muscular artifacts. The proposed BCI system was com-
posed of four main stages: artifact detection, artifact removal,

feature extraction module and feature classification. The filter-
ing signals are obtained by applying an inverse SWT on the
thresholded SWT coefficients. Some alternative studies aimed
at eliminating EEG artifacts were performed. They were based
on the hybrid WICA (wavelet-ICA) method [18]. Therefore, to
improve the feature extraction performance of the EEG signals,
the proposed approach includes the properties of three tech-
niques: adaptive filtering, wavelet transform and ICA methods.
The authors in [19] present numerical variable forgetting fac-
tor–recursive least squares method based on adaptive filtering
in order to remove the ocular artifacts from the EEG signal.
This method treats the separately recorded reference horizon-
tal electro-oculogram (HEOG) and vertical electro-oculogram
(VEOG) signals using finite impulse response filtering. There-
after, the two HEOG and VEOG signals are removed from the
recorded EEG signal to obtain a non-artifact EEG signal.

The main objective of this research work is to develop a new
efficient method of EEG artifact removal. The first contribution
in this paper is to use the efficient fast independent component
analysis (EFICA) method, which is an advanced version of fast-
ICA algorithm in order to remove ocular and muscular artifacts
from EEG signals. In fact, apart from the medical domain,
the EFICA is a technique used in several other fields such
as speech feature extraction [20]. In order to further improve
the filtering process efficiency of this algorithm, this work
proposes to combine the EFICA technique with tunable Q-
factor wavelet transform (TQWT). However, the filtering of
very noisy signals is still a big problem in the field of signal
processing. Indeed, even the most reliable filtering methods
remain unable to give effective results for this type of signals.
Accordingly, the major contribution in this paper focuses on
the use of the 3D interpolation method [21] to filter the EEG
signals of a large amount of artifacts. The proposed system
extracts the noisiest electrode signal(s) by using the radial basis
function (RBF) kernel based on the support vector machine
(SVM). This (these) electrode(s) will be removed to filter the
remaining less noisy channels of the EEG signals with the
hybrid method, EFICA-TQWT. After that, a construction of the
eliminated signal(s) will be carried out using the other filtered
channels of the EEG signals. The evaluation of the novel hybrid
method with and without interpolation is achieved by applying
the evaluation criteria: mean squared error (MSE) and signal
to noise ratio (SNR). Besides, an acceleration of the proposed
filtering system based on graphical processing units (GPU) is
given in order to meet the real-time processing requirement.

This paper is organized as follows: the dataset used is dis-
cussed in Section 2. The proposed method is described in
Section 3. In Section 4, the obtained results are presented and
discussed. Finally, the conclusion is covered in the last section.

2. MATERIALS

The effectiveness of the proposed EEG filtering system was
evaluated in three different EEG datasets. The first one (dataset
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1) corresponds to three healthy subjects, two males and one
female aged from 20 to 30 years old. This EEG dataset was
recorded by 19 electrodes according to the standard 10/20
system with a sampling frequency of 256 Hz and was provided
by Sahloul Hospital, Sousse-Tunisia. Sixty-second long EEG
records were taken with muscular and ocular artifacts.

The second one (dataset 2) of six pathological subjects (two
males, four females) is provided by the Karunya University,
India. This dataset was recorded by an 18-channel international
10/20 system, in which 16 electrodes are dedicated to scalp
channels and the two other electrodes are periocular channels
with the references to left and right mastoids. The sampling
frequency is 256 Hz and a data preprocessing has been applied
with an analog pass-band filter of 0.01_100 Hz. Each recording
was 10 s long, which is characterized by generalized and
localized waves [22].

The third one (dataset 3) is related to 23 healthy recordings
corresponding to 12 males and 11 females with an age range of
32 to 65 years. Each signal in this internationally recognized
EEG dataset is characterized by its well-defined recording
protocol and the details corresponding to subject (age, sex
and the EEG waveforms), which are described in a given file.
The EEG recordings were obtained using a 19-channel EEG
digital video system with a sampling frequency of 250 Hz. The
recording of each processed signal is 1 minute long.

All records from the three datasets are chosen with the help
of an expert in physiology. These records are characterized by
the presence of ocular and muscular artifacts, which can be
observed on one or more channels. The approach proposed in
this paper considers the raw data of the three datasets as inputs
to the filtering system without any preprocessing process.

3. METHODS

The proposed filtering method is composed of four stages. The
first one consists in classifying the noisiest EEG channel(s)
from EEG recordings by applying the RBF kernel-based SVM.
The second step is to eliminate the noisiest channel(s) and apply
the hybrid EFICA-TQWT method on the rest EEG channels for
ocular and muscular artifact removal. A reconstitution of the
eliminated EEG signal(s) by applying the 3D spline method on
the other filtered recordings will be carried out in the third step.
The last stage permits to evaluate the EFICA-TQWT method
with interpolation by calculating the MSE and SNR (Fig. 1).

3.1. Step 1: SVM

Thanks to its efficient generalization performance for the data
of large dimension by dint of its convex optimization problem
[23], different versions of SVM are widely used for classifica-
tion in the biomedical field. For example, the work of [24, 25]
exploited the generalized eigenvalue proximal carrier vector
machine (GEPSVM) to detect pathological brain images from
normal ones by using the MRI scanning. Similarly, Wang et

FIGURE 1. The multi-channel EEG analytical system block diagram
for artifact removal.

al. [26] compared the efficiency of SVM, GEPSVM and twin
SVM for the classification of MRI brain images. In addition,
several works used multiple versions of SVM to classify the
EEG signals according to epilepsy, movement, etc. [27–30].
The results showed that the RBF kernel SVM classifier offered
better performance at the classification level [29–30]. Based
on these results, this paper implements an RBF kernel SVM
classifier to select the noisiest channel(s) by providing high
accuracy and low algorithmic complexity.

To better justify the choice of the RBF kernel SVM and in
addition to the accreditation on these different works [29–30],
an empirical study was carried out by varying the kernels of
the SVM algorithm. This study allows to know which kernel
function best suits the classification problem in order to extract
the noisiest channel(s) from all the used channels. For this
study, three functions were considered: the linear, polynomial
and RBF [31].

3.1.1. Theoretical SVM study
The SVM is a computational learning theory based on the
classification and recognition method. Thanks to its ability to
treat numerous predictors, the SVM is often used in biomedical
classification applications [32].

For a classification problem of two linearly separable
classes, the basis of SVM is to find a hyperplane H0 that allows
the separation of the entrance space with a maximum margin
[32].

Let X = {x1, . . . , xl}, xi ∈ Rn a whole of training data
vectors, Y = {y1, . . . , yl}, yi ∈ {1, −1} a corresponding labels
set, w a normal weight vector to the hyperplane and b a bias,
such that b∈ R.
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To be adequately classified, the xi and yi vectors must verify
Eq. 1 and Eq. 2 [33]:

wxi + b ≥ +1 for yi = +1 (1)

wxi + b ≤ −1 for yi = −1 (2)

In other words (Eq.3):

yi (wxi + b) ≥ 1, ∀i (3)

In fact, the performance of a linear SVM relies on a penalty
parameter C, which equilibrates the relative importance cor-
responding to minimizing the learning error and maximizing
class margins [30]. In the case of great C values, the optimiza-
tion chooses a smaller margin hyperplane if the hyperplane
correctly classifies the training points. However, for small val-
ues of parameter C, a larger margin hyperplane will be chosen
even if more points are misclassified. Indeed, the SVM is trans-
formed into a non-linear method in case a kernel trick technique
is used. In that event, the hyperplane will be constructed in a
higher-dimensional space, which is the transformation of low-
dimensional input space by the kernel function [29]. Among
the kernel functions, different works used the RBF kernel-
based SVM for EEG classification [29–30]. This RBF kernel
is optimized for two kernel parameters: the penalty factor C
and the gamma parameter that specifies the similarity between
points [30].

In fact, the RBF is characterized by the problem decision
function, which is defined by Eq. 4 [31]:

F(x) = sign

(
n∑

i=1

yiαik (x, xi) + b

)
(4)

with the αi ≥ 0 are the Lagrange multipliers associated with
the constraints and k is the kernel.

In the case of the RBF, the kernel is mathematically defined
by Eq. 5 [34]:

k (xi, x) = exp
( − γ ‖xi − x‖2), γ > 0 (5)

where k(xi,x) is the kernel function that is based on the inner-
product of the two variants xi and x; and γ defines the scope of
the influence of a single learning example.

To present the linear and polynomial function respectively,
the kernel will be defined by Eq. 6 and Eq. 7:

K (x, xi) = x.xi (6)

K (x, xi) = (1 + x.xi)
d, (7)

where d is the polynomial degree, d ≥ 1.

TABLE 1. Distribution of the EEG channel recordings into the train-
ing and testing sets.

Dataset Total
channels

Channels of the
training phase

Channels of
the test phase

Dataset 1 57 34 23
Dataset 2 96 58 38
Dataset 3 437 262 175
Total 590 354 236

FIGURE 2. SVM blocks.

3.1.2. RBF kernel SVM classifier
All channels of different subjects for each dataset are used
in the SVM classification system by dividing them into two
parts. The first part, which includes 60% of the channels, is the
training phase. The second part is the testing stage and it the rest
of channels (40%) (Table 1). This division is chosen to balance
the presence of the various ocular and muscular artifacts in
the different EEG recordings by taking into account the inter-
EEG channel division. In fact, the EEG channel recordings used
to construct the training set are different from those used to
evaluate the testing phase.

Indeed, the SVM classification is based on feature vector
characterized every EEG signal of each channel. This vector
is composed of three parameters. The first two parameters
are taken from the temporal EEG signal, which are the EEG
minimum and maximum amplitudes (Amin, Amax). The FFT
was used to extract the third parameter in the frequency domain,
which is the power spectral density.

The input data produced for the SVM are exposed in the
form of an NxM matrix, where the rows and columns repre-
sent respectively the EEG channel signals and the extracted
features. In fact, each EEG signal of the healthy subjects from
dataset 1 (3) and dataset 3 (23) was recorded on 19 electrodes.
However, the EEG recording corresponding to each epileptic
patient (6) is represented on 16 channels. The total number of
matrix rows is equal to 590 channels. M + 1-column values are
considered in order to distinguish the noisiest channels from the
less noisy ones. In this work, a matrix of 590 × 4 was obtained.
The stepwise SVM selects the features that best discriminate
between the two output classes.

In this paper, for each subject, one or more channels are
classified as the noisiest outputs. During testing, the SVM
classifies EEG features as a state ‘0’ (less noisy channel) or
a state ‘1’ (noisiest channel) (Fig. 2).
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3.2. Step 2: ocular and muscular removal methods

The present work explores an evaluation study of proposed
new ocular and muscular removal method of EEG signals. This
method is the EFICA-TQWT, which is a hybrid method of
EFICA algorithm of ICA with the TQWT.

In fact, the combination of these two techniques (EFICA
with TQWT) was opted for because the ICA versions filter
only the artifacts with the same or greater amplitudes than the
useful EEG signal (muscular artifacts). However, the TQWT
are effective just in the filtering of low frequencies (ocular
artifacts) [9].

3.2.1. Theoretical study of filtering methods
• EFICA algorithm

In this paper, the efficient variant of fast-ICA (EFICA)
algorithm was used. This method was proposed in [35]. It is
based on the theory of fast-ICA, which is an advanced version
of ICA algorithm. In fact, the objective of the ICA method is
to find a data linear transformation. The ICA model is given by
Eq. 8 [36]:

X = AS + v (8)

with:
—X is a d × N matrix of unknown source signals, where xkl

is the (k, l) − th element. In this case, d is the mixed signal
number and N is the sample number,

—S is the independent component (IC) source signals,
—A is the d × d unknown mixing matrix,
—v is the additive noise.
To rebuild the exact vector S, the v value is considered as

zero. So, the ICA model is expressed as follows (Eq.9) [36]:

X = AS (9)

The basic idea is to find the most characteristic direction in
the feature space to make the signal independent of each other.
Its main task is to find the inverse matrix with (Eq. 10, 11):

W = A−1 (10)

So
S = WX (11)

The emergence towards the fast-ICA allows to demix a set of
statistically independent sources that have been mixed linearly.
Traditional fast-ICA is the use of negative entropy to determine
the non-Gaussian independent component [37]. This method
determines the proximity of the independent component and
can solve some real-time high-dimensional problems.

Note that c(wk) is an iterative optimization process (Eq. 12):

c (wk) = E
[
G

(
wT

k z
)]

(12)

where:
—E stands for the sample mean,
—wT

K is a row vector corresponding to the ith source signal
in the matrix W after k iterations,

—G(.) is a suitable nonlinear function, called contrast func-
tion (Eq. 13):

g = 1

α1
log cosh (α1y) , (13)

—z is the inverse of the source signal X.
The symmetrical version of Fast-ICA estimates all original

signals in parallel way. Each stage is finished by a symmetric
orthogonalization (Eq.14) [35]:

w+
k = E

[
zg

(
w+

k z
)] − wkE

[
g′ (w+

k z
)]

(14)

where g(.) and g′(i) indicate respectively the first and the
second derivative of function G(.).

The EFICA algorithm, which is the improved version of fast-
ICA, has three main steps [35]:

(A) Application of fast-ICA transformation of the source
signal.

(B) A straightforward solution would be to choose gk(.) as a
score function that belongs to the sample distribution function.

For each k = 1, . . . ,d; the adaptive choice of the nonlinear
function gdef

=
gk is the approximation score function for the kth

component;
(C) Using Eq. 14 for iteration of k = 1, . . . ,d; the correspond-

ing final weight is (Eq. 15):

ckl = VlU
kl

VlU
lk + 1

, k 	= l; ckk = 1; l = 1, . . . , d (15)

where V1U
kl is the Gaussien distribution variance of the normal-

ized gain matrix elements N1/2G1U
kl . The G1U

kl gain is obtained
by the one-unit variant using a nonlinear function g(.) for the
EFICA method [35].

So, the W+
k matrix; for each k = 1,...,d; is defined by Eq. 16:

W+
k =

(
cklw

+
l∥∥w+

l

∥∥ , . . . ,
ckdw+

d∥∥w+
d

∥∥
)t

(16)

Thus, the symmetric orthogonal matrix W+
k obtains the final

wk estimate.

• Tunable Q-factor wavelet transform

The TQWT is used for signal decomposition, more particu-
larly in biomedical signal analysis applications [38].

The TQWT is an advanced version of the wavelet transforms
[39]. It has been recently developed to be dedicated to discrete-
time signals. It is characterized by a Q-factor that is readily
and continuously adjustable. This transformation is based on
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FIGURE 3. Analysis and synthesis filter banks of the TQWT.

the use of a bank of reversible oversampled filters with real-
valued sampling factors. These filters are specified directly in
the frequency domain (Fig. 3) [40].

In fact, the Q-factor is defined as the ratio between the center
frequency f0 and the bandwidth bw of the band pass filter (Eq.
17) [40]:

Q = f 0

bw
(17)

The TQWT is implemented using the concept of two-
channel filter banks iteratively.

Noting α and β respectively the low-pass and high-pass scale
factors for the two-channel filter bank, the frequency response
of low-pass filter H0 mathematically expressed as (Eq. 18)
[41]:

H0(w) =

⎧⎪⎨
⎪⎩

1, |w| ≤ (1 − β) π ,

θ
(

w+(β−1)π
α+β−1

)
, (1 − β) π ≤ |w| < απ ,

0, απ ≤ |w| ≤ π ,
(18)

The frequency response of high-pass filter can mathemati-
cally be expressed as Eq. 19 [41]:

H1(w) =

⎧⎪⎨
⎪⎩

0, |w| ≤ (1 − β) π ,

θ
(

αw−w
α+β−1

)
, (1 − β) π ≤ |w| < απ ,

1, απ ≤ |w| ≤ π ,
(19)

where θ (ω) is the Daubechies filter frequency response [41],
the low-pass scaling (LPS) α, 0 < α < 1 and the high-pass
scaling (HPS) β,0 < β ≤ 1 are to be selected in order to
respect the condition α + β > 1. This condition ensures perfect
reconstruction and avoids redundancy.

The α and β factors are related to the quality factor (Q),
redundancy parameter (R) and maximum number of sub-bands
(Jmax) of TQWT, which are defined as [41]:Q=

2 − β

β
(20)

R = β

1 − α
(21)

FIGURE 4. General process flow of EFICA-TQWT algorithm.

Jmax =
⎛
⎝ log

(
βN

/
8

)
log

(
1
/

α

)
⎞
⎠ (22)

with N is the length of the analysed signal.
In fact, the procedure of TQWT filtering is the following:
Step 1: Fix the constant bandwidth for each sub-band.
Step 2: Choose the values of TQWT parameters: the

Q-factor, the parameter R and the number of decomposition
stages J.

Step 3: Calculate the low-pass scaling LPS and the high-pass
scaling HPS by using the following equations:

LPS = 1 − (HPS)

R
(23)

HPS = 2

Q + 1
(24)

Step 4: Calculate the ratio of center frequency (CF) corre-
sponding to the bandwidth of each sub-band (Eq. 25).

CF(j) = (LPS)j
[

2 − (HPS)

4 (LPS)

]
fs (25)

Step 5: Apply the TQWT on the input signal of The TQWT
block by adopting the assigned values of Q-factor, R and J. In
this case, the TQWT block made the wavelet coefficients of
each sub-band except the Jth sub-band that is equal to zero.

Step 6: Finally, obtain the sub-band signals by applying the
inverse TQWT using the TQWT filter block from the Jth sub-
band.

3.2.2. Proposed filtering algorithms: hybrid (EFICA-TQWT)
algorithm
The EFICA-TQWT algorithm for ocular and muscular artifact
removal is based on four main steps (Fig. 4):

(A) The EFICA method is applied to the EEG signal to
suppress high-frequency artifacts (muscular artifacts).

(B) To filter the low-frequency artifacts, the radix-2 TQWT
[42] is applied to the EEG denoised signal by the EFICA
method. The EEG signals corresponding to various channels
are decomposed with the same Q, R and Jmax parameters using
the radix-2 TQWT operation. In this work, after a comparative
study, the best results were obtained with Q = 3, R = 3 and
Jmax = 21.

(C) The basis pursuit denoising (BPD) algorithm is applied
on the out-put EEG signal from EFICA. This approach is based
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on the assumption that a signal y is corrupted by additive noise
n (Eq. 26):

y = x + n (26)

In order to estimate the signal x, which has a sparse represen-
tation, from the signal y, a sparsity-based method particularly
the BPD [43] is implemented. This algorithm using a variation
of SALSA [44] reduces the sum of the l1-norm corresponding
to the TQWT transform coefficients and the residual energy
(Eq.27) [42]:

arg min
w

‖ y − TQWT−1(w) ‖ 2
2
+

∑J+1

j=1
λj ‖ wj‖1 (27)

with:
—wj represents subband j,—λjε(λ1, λ2, . . . , λJ+1) are regu-

larization parameters,
—‖‖i, i ε {1, 2}, represents respectively the l1 and l2 norm,
—J is the number of filter banks.
The signal x will be estimated asTQWT−1(w).D) The EEG

filtering signals are remodeled by applying the inverse TQWT
technique (Fig. 3).

3.3. Step 3: the 3D spline interpolation method

Based on the work [21], the 3D spline interpolation method of
order three was used in the present paper since it was given the
most minimal value of the root mean squared error.

The principle of this algorithm is as follows: it uses the
EEG, the position of the real and interpolated electrodes as
input and generates in output, by mathematical interpolation,
the new values of the electrical activities relative to the virtual
electrodes.

Let Es a set of M less noisy source samples esl; l = 1, . . . , M;
where real potential Vsl are measured.

Let ei the point of the nosiest channel, where interpolated
potential Vi will be calculated.

Let us denote by (xi, yi, zi) and (xsl, ysl, zsl), respectively, the
coordinates of ei and esl points.

The interpolated potential Vi at a point ei is calculated by
the 3D spline method according to the following equation
(Eq. 28) [21]:

Vi =
∑M

l=1
Plhm (xi − xsl, yi − ysl, zi − zsl)

+
∑m−1

d=0

∑d

f =0

∑f

g=0
qdfgxid−f yif −gzig (28)

where

hm (r, s, t) = (r2 + s2 + t2)
2m−3

2 (29)

In this work, hm is a polynomial function calculated accord-
ing to the Cartesian coordinates of the less noisy real electrodes
, (xsl, ysl, zsl) and those of the nosiest electrode , (xi, yi, zi) with

the order of the 3D spline interpolation equal to three (m = 3);
where:
—

r2 = (xi − xsl)
2

(30)

—
s2 = (

yi − ysl

)2
(31)

—
t2 = (zi − zsl)

2
(32)

Pl and qdfg are obtained by solving the matrix form of Eq. 33
applied to less noisy source points [21]:

(
H
Ft

F
0

)(
P
Q

)
=

(
Vs
0

)
(33)

such that:
—Q = (q000, q100, q110, q111, . . . , qm−1 m−1 m−1)

t,
—P = (P1, P2, . . . , PM)t,

− H = (Hij)1≤i,j≤M , (34)

with,

Hij = hm(xsi − xsj, ysi − ysj, zsi − zsj)

− F =⎛
⎜⎜⎝

1 xs1 ys1 zs1 xs2
1 xs1 · ys1 xs1 · zs1

...
...

...
...

...
...

...
...

1 xsM ysM zsM xs2
M xsM · ysM xsM · zsM

ys2
1 ys1 · zs1 zs2

1 . . . zsm−1
1

...
...

... . . .
...

ys2
M ysM · zsM zs2

M . . . zsm−1
M

⎞
⎟⎟⎠

(35)

3.4. Step 4: evaluation criteria

In this work, the ocular and muscular removal method was
evaluated by calculating two evaluation criteria: MSE and
SNR.

Let N the number of EEG signal samples, xi be the EEG
original signal of the sample i, with 1 ≤ i ≤ N,—x′

ithe EEG
filtered signal of sample i, with 1 ≤ i ≤ N,

The MSE value is calculated using the Eq. 36 [45]:

MSE (μV2) =
∑N

i=1

(
x′

i − xi
)2

N
(36)

The SNR is expressed as (Eq. 37) [45]:

SNR (dB) = 10 log10

[ ∑N
i=1 x2

i∑N
i=1

(
x′

i − xi
)2

]
(37)
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8 A. Abidi et al.

FIGURE 5. Confusion matrix of the SVM.

4. RESULTS AND DISCUSSION

4.1. SVM results

The RBF kernel based SVM classifier system was tested on
every recording of the healthy and pathological datasets to
extract the most artifactual EEG channel(s). In fact, a training
vector was created to train the SVM by taking 354 channels
from each of the three used EEG datasets. Then, the proposed
SVM algorithm was tested using a testing vector created from
the remaining 236 channels.

The performance of the SVM classifier was evaluated using
the information extracted from the confusion matrix (Fig. 5),
where true positive (TP) and false positive (FP) designate
respectively the total number of correctly classified nosiest
channels and the amount of actually less noisy EEG channels
diagnosed as the nosiest electrodes. Similarly, true negative
(TN) and false negative (FN) describe respectively the number
of correctly classified less noisy channels, and the nosiest
electrodes incorrectly classified as the least artifactual EEG
channels.

The receiver operating characteristics parameters such as
accuracy, specificity and sensitivity were calculated for the
used SVM model. Equations 38, 39 and 40 were used to
calculate these evaluation parameters during the testing phase
[46]:

accuracy (%) = 100 × (TN + TP)

TN + TP + FN + FP
(38)

Sensitivity (%) = 100 × TP

TP + FN
(39)

Specificity (%) = 100 × TN

TN + FP
(40)

In order to justify the choice of a good classifier based on
the three kernels of SVM (linear, polynomial and RBF), the
validation metrics (accuracy, sensitivity and specificity) were
calculated by considering the test channels of the three datasets
used (Table 2).

TABLE 2. Comparative table of Kernel SVM performance.

Kernel Accuracy
(%)

Sensitivity
(%)

Specificity
(%)

Linear 88.48 71.05 95.82
RBF 97.45 86.66 100
Second degree polynomial 90.02 72.9 98.73
Third degree polynomial 93 .74 75.2 100

Table 2 shows that using the RBF kernel provides the best
classification performance compared to the linear and both
second and third degree polynomial kernels, since it produces
an accuracy of 97.45%, a sensitivity of 86.66% and a 100%
specificity in classifying all testing channels. In fact, to calcu-
late the accuracy, sensitivity and specificity, the RBF SVM has
been trained by using several values of C and γ parameters.
In this work, these parameters are selected since they give the
highest accuracy. The best results are found by setting C to 1
and γ to 0.4 (Table 3).

So according to the results found in Table 2 and 3, the RBF
SVM classifier (with C = 1 and γ = 0.4) is adopted in order
to have an efficient classification. In this case, Table 4 presents
a comparison between the results found by the SVM classifier
and the classification of an expert in physiology. The results
show that 6 channels have been designated as false negative
channels and 39 channels have been classified as true positive
channels. The false negative and the true positive channels are
defined respectively in the output of SVM classifier as status
‘0’ and ‘1’. Each signal corresponding to an identified noisy
channel will be eliminated in order to apply the filtering process
to other least artifactual EEG channels for each subject.

In this case, the confusion matrix that is obtained for the test
channels (236 channels) is defined in the Fig. 5.

4.2. Filtering results

4.2.1. Analysis I: comparison without interpolation
Before testing the interpolation effect on EEG signal filtering,
this work will test the performance of the developed EFICA-
TQWT hybrid method on the EEG signal. This technique is
applied to the real FP1 EEG signal corresponding to healthy
subject 1. This real portion of FP1-EEG signal is characterized
by the presence of ocular and muscular artifacts (Fig. 6).

To distinguish the filtering method performance proposed
for eliminating ocular and muscular artifacts, while preserving
useful neural information, a separation of the raw EEG data into
three regions: ‘EEG with ocular artifacts’, ‘EEG with muscular
artifacts’ and ‘EEG without ocular and muscular artifacts’ was
performed. For example, Fig. 6 shows the effect of filtering
by the EFICA-TQWT method on an FP1 electrode recording
with a duration of 14 s characterized by the presence of ocular
and muscular noises (according to an expert). The major ocular
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Hybrid Multi-Channel EEG Filtering Method 9

TABLE 3. Evaluation of RBF kernel SVM classifier performances by varying γ and C.

Performances Gamma variation 0.01 ≤ C ≤ 0.56 0.56 < C ≤ 0.9 C ≥ 1

Accuracy (%) γ = 0.1 80.09 85.67 93.85
γ = 0.4 83.15 87.95 97.45
γ = 1 67.02 71.29 83.71

Sensitivity (%) γ = 0.1 75.37 77.43 82.9
γ = 0.4 76.93 83.54 86.66
γ = 1 70.18 76.07 76.46

Specificity (%) γ = 0.1 70.23 80.58 88.51
γ = 0.4 76.35 82.73 100
γ = 1 68.97% 73.22% 90%

FIGURE 6. Filtering noisy EEG portion of FP1 channel with (a) both
ocular and muscular, (b) ocular and (c) muscular artifacts.

artifact appears at the third second. The eye-blinking artifact
appears in EEG as big pulses well localized in time. However,
the muscular artifact emerges at second 7.9 of EEG recording.

For Fig. 6, a careful observation shows that EFICA-TQWT
exquisitely produced cleaner processed signals in both cases of
ocular and muscular artifacts. In addition, this method shows
a great efficiency and competence for preserving neuronal
information in the non-artifact region.

To effectively show the performance of the EFICA-
TQWT technique, Table 5 gives the found SNR and MSE
corresponding to 1-minute recording of noisy single FP1
channel of healthy subject 1 filtering with the hybrid EFICA-
TQWT method. The results show that this method offers a
high SNR rate with a low MSE value for both OA and MA

categories. The SNR and MSE in the case of MA are more
important since this type of artifact occupies a larger amount
in this FP1 EEG signal.

To better demonstrate the effectiveness of this hybrid
method, the EFICA, classical fast-ICA, TQWT and DWT
methods were applied on the three datasets used in this work in
order to perform a comparative study between these methods
and the EFICA-TQWT. Table 6 shows the MSE and SNR
means of these methods applied on the different EEG signals
from the three datasets.

According to Table 6, the five methods (Fast-ICA, DWT,
TQWT, EFICA and EFICA-TQWT) show a higher efficiency
in filtering the muscular and ocular artifacts, more particularly
in the case of healthy subjects (datasets 1 and 3). Indeed, the
SNR in all cases of healthy subjects is larger than that in
epileptic patients (dataset 2). This means that healthy EEG
signals are more infected by these types of physiological noise
(ocular and muscular).

Moreover, Table 6 shows that the hybrid EFICA-TQWT
algorithm improves the quality of ocular and muscular artifact
removal by comparing it to other methods. More precisely, the
EFICA-TQWT offered good results by giving the lowest MSE
average (0.361 μV2) and highest SNR mean (17.63 dB). In fact,
this proposed hybrid method (EFICA-TQWT) is slightly effec-
tive in terms of removing noise, especially in the case of healthy
dataset 3 by offering the significant value of SNR (36.15 dB)
compared more particularly to epileptic dataset 2. This result
asserts that the EFICA-TQWT method can distinguish ocular
and muscular artifacts from other types of artifacts or epileptic
waves.

However, the DWT and TQWT methods show the worst
results. This can be explained by the fact that these methods
are characterized by the removal of artifacts of low frequen-
cies (ocular). Moreover, although fast-ICA and EFICA give
better results than the DWT and TQWT method, they remain
less efficient than the hybrid EFICA-TQWT filter since they
remove only high frequency artifacts (muscular). To remedy
this problem, the combination of the EFICA method with
the TQWT will be a primordial necessity. This combination
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TABLE 4. SVM classifier results.

Dataset Subject Noisiest channel
(according to the
expert)

SVM
result

Dataset 1 Subject 1 FP1 TP
CZ TP

Subject 2 T3 TP
Subject 3 F7 TP

F3 FN
Dataset 2 A0005 P3 TP

A0018 C3 TP
A0019 P4 FN
A0022 F4 TP
A0024 C1 TP
A0032 F4 FN

F8 TP
Dataset 3 2272 T3 TP

2508 F3 TP
F4 TP

2705 T3 TP
5221 F8 TP

T4 TP
5394 C4 TP

T3 TP
T6 TP

5398 F7 TP
F8 TP

5457 T3 TP
F7 TP

5655 T3 TP
F7 TP
F8 TP

5851 F7 TP
F8 TP

5921 T3 TP
6061 T3 TP
6076 F8 TP
6088 T4 TP
6201 T3 FN
6215 FP2 FN
6238 F7 TP
6317 FP1 FN
6322 FP2 TP
6422 C4 TP

F8 TP
7020 T3 TP
7481 FP1 TP
7647 FP2 TP
7679 F7 TP

TABLE 5. The MSE and SNR of filtering FP1 EEG signal of healthy
subject 1 by EFICA-TQWT method.

Real FP1 EEG SNR
(dB)

MSE
(μV2)

Total signal (60s) 12.05 0.74
Portion with ocular artifact (3 s to 4.7 s) 13.84 0.54
Portion with muscular artifact (7.9 s to 8.5 s) 17.32 0.67

FIGURE 7. T3 channel EEG portion of the healthy subject 2 (a) with
artifacts, (b) filtered by EFICA-TQWT without interpolation and (c)
filtered by EFICA-TQWT with interpolation.

offers a more effective improvement to ocular and muscular
artifact removal with the ability to provide a filtered EEG signal
without information loss.

4.2.2. Analysis II: comparison with interpolation
According to the previous subsection, the EFICA-TQWT fil-
tering method gives the best results. For this, this method will
be adopted in this section to study the effect of 3D spline
interpolation on the filtering efficiency of EEG signals.

Let us take the example of the healthy subject 2 from dataset
1. Figure 7 presents the denoised T3-channel signals (Table 4)
during a 6 s up to 11 s period obtained when the hybrid
proposed filtering algorithm EFICA-TQWT, with and without
interpolation, is used to remove artifacts in the real EEG signal.
Based on visual examination, the muscular and ocular artifacts
contaminating the T3-channel are presented respectively from
7.9 s to 8.5 s and 9.4 s to 9.5 s. These muscular and ocular
artifacts are removed by the EFICA-TQWT method using the
interpolation technique (Fig. 7 (c)).

Figure 7 shows a higher performance of filtering in the case
of EFICA-TQWT with T3 interpolation. In fact, muscular
artifact removal based on EFICA-TQWT without interpolation
reduces the noise level found in the EEG signal. However,
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TABLE 6. Comparison of MSE and SNR for the EEG datasets.

Dataset 1 Dataset 2 Dataset 3 Average
Criterion method SNR (dB) MSE (μV2) SNR (dB) MSE (μV2) SNR (dB) MSE (μV2) SNR (dB) MSE (μV2)

Fast-ICA 7.987 1.129 2.709 0.795 22.26 0.798 10.98 0.907
DWT 5.265 1.574 1.857 1.168 16.39 1.083 7.83 1.275
EFICA 9.758 0.917 3.267 0.585 28.49 0.716 13.83 0.739
TQWT 6.641 1.209 2.258 0.831 19.94 0.952 9.613 0.997
EFICA-TQWT 11.948 0.468 4.82 0.208 36.15 0.409 17.63 0.361

TABLE 7. Comparison of MSE and SNR of EEG signal corresponding to T3 electrode for the healthy subject 2.

Method Without interpolation With T3 interpolation

SNR(dB) MSE(μV2) SNR(dB) MSE(μV2)

EFICA-TQWT 18.698 0.482 25.718 0.22

with a large amount of MA characterized by great amplitude
(between −200 μV and 200 μV) and wide impulses, it is
insufficient to have a raw EEG signal with only useful neural
information. The appeal of the 3D spline interpolation method
offers a better result with total elimination of muscular and
ocular artifacts.

Table 7 compares the performance criteria achieved by
applying the proposed filtering method (EFICA-TQWT) only
on 1-minute EEG signal of T3 channel in two cases: filtering
with and without using T3 interpolation.

According to Table 7, the filtering method gives better
results when using the 3D spline interpolation technique by
giving the highest SNR and the smallest MSE.

Moreover, the proposed hybrid system performance not only
applies to the EEG recordings with a single noisy channel,
but greater efficiency has been shown for noisy multi-channel
signals. For example, Fig. 8 presents a 14-second EEG record-
ing of a patient from dataset 3 characterized by the presence
of intense muscular and ocular artifacts, more particularly in
three channels (T3, C4 and T6). Likewise, the EFICA-TQWT
filtering method with and without interpolation is applied to
this EEG recording (Fig. 8).

Figure 8 shows that both EFICA-TQWT with and without
interpolation allow very effective filtering of less noisy chan-
nels by muscular and ocular artifacts. However, EFICA-TQWT
seems less efficient in the case of channel filtering with intense
artifacts. The solution to improve filtering must be provided by
the hybrid method with the 3D spline. In fact, the 3D spline
technique is a global interpolation method that allows a proper
estimation of the channels to be interpolated, even if they are
deputies, with minimal error [21]. This 3D spline feature makes
it possible to build well filtered EEG signals from the other real
filtered channels, even if the SVM classification system shows
several positive channels (very noisy).

Table 8 gives the different SNR and MSE measured by the
two methods (with and without interpolation) over a 1-minute
period.

Table 9 presents the average performances according to MSE
and SNR metrics of studied filtering method EFICA-TQWT
with 3D spline interpolation for the multi-channel EEG of
each healthy (dataset 1 and 3) and pathological (dataset 2)
subjects.

Table 9 shows that the EFICA-TQWT with 3D spline allows
high performance in filtering EEG signals, especially for sig-
nals highly noised by ocular and muscular artifacts (dataset
3). However, the SNR of dataset 2 corresponding to EFICA-
TQWT with interpolation (6.123 dB) does not provide much
improvement over that of EFICA-TQWT without 3D spline
(4.82 dB). This is explained by the presence of weak artifacts
in this dataset. Nevertheless, the EFICA-TQWT with interpola-
tion is highly efficient in terms of SNR (24.124 dB) and MSE
(0.131 μV2) averages compared to that without interpolation
(SNR = 17.63 dB and MSE = 0.361 μV2).

These results are very satisfactory compared to other works.
In fact, different datasets were used in the literature to val-
idate the filtering methods. For example, the authors in [47]
utilized EEG signals recorded using 32 channels from healthy
and disabled subjects. In this work, the study was carried
out to compare three methods (translation invariant wavelet
transform: TI-WT, fast-ICA and radical algorithms) used in
artifact removal. The TI-WT gave the best results with an SNR
nearer to zero and a smaller MSE (compared to other methods)
of 1.00e+03. In addition, the authors in [48] found that the
proposed algorithm based on the multi-channel Wiener filter
for eye blink artifact removal gave a mean SNR around 12 dB.
In [49], the authors utilized the ICA as a BSS technique for
removing mobility artifacts. The ICA method gave an SNR
almost equal to 11 dB.
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FIGURE 8. Multi-channel EEG signals of healthy subject from dataset 3: (a) with artifacts, (b) filtered by EFICA-TQWT, filtered by EFICA-
TQWT with spline 3D.

TABLE 8. Comparison of MSE and SNR of EEG signal corresponding to a healthy subject from dataset 3.

Channel EFICA-TQWT without interpolation EFICA-TQWT with T3 interpolation

SNR (dB) MSE (μV2) SNR (dB) MSE (μV2)

T3 30.38 0.582 34.49 0.399
C4 32.49 0.632 37.78 0.581
T6 26.87 0.593 39.53 0.460
Total of 19 channel over a 1-minute
period

28.39 0.573 31.57 0.377

TABLE 9. Comparison of MSE and SNR of EFICA-TQWT with 3D spline for the EEG datasets.

Dataset 1 Dataset 2 Dataset 3 Average
Criterion method SNR (dB) MSE (μV2) SNR (dB) MSE (μV2) SNR (dB) MSE (μV2) SNR (dB) MSE (μV2)

EFICA-TQWT
with 3D spline

17.60 0.168 6.123 0..091 48.65 0.135 24.124 0.131

In addition, in [50] several pre-processing filters were tested
on EEG data, such as self-filter, Kalman filter, recurrent quan-
tum neural network filter, moving average filter, modified self-
filter, Savitzky Golay filter and Weiner filter. A study was con-
ducted to find the best pre-processing technique for cleaning

EEG signals. From the results obtained, it was concluded that
the self-filter showed the best results when compared to other
filtering techniques. In fact, the self-filter exhibited a maximum
SNR value equal to 24.83 dB and an MSE equal to 0.404 μV2

for random noise signals.
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TABLE 10. Execution time of different filtering process algorithms on CPU and GPU.

Algorithm CPU execution time in seconds GPU execution time in seconds Optimization rate%

SVM classification 0.389 0.207 46.78
EFICA-TQWT (18 channel
filtering for 1 minute)

15.705 8.352 46.81

3D Spline (interpolation of a
single channel over 1 minute)

8.694 4.46 48.70

Total 24.788 13.019 47.47

4.3. Computational times of EFICA-TQWT with
interpolation

In addition to providing a hybrid EEG signal filtering system
based on interpolation, the current work is also aimed at opti-
mizing the calculation times of this system in order to increase
the efficiency of the proposed algorithm in terms of execution
time and meet the requirement of real-time processing. In
particular, the proposed hybrid EEG filtering method is imple-
mented independently in a sequential MATLAB version for
the CPU and a MATLAB/compute unified device architecture
(CUDA) version for the GPU. The choice of GPU is justified
by the presence of several thousand threads on GPU. These
threads make this graphical processing look similar to a super
calculator rather than a multi-core CPU, which allows only a
few threads to be treated simultaneously.

In fact, all calculations realized in this work were performed
on an Intel (R) Core ™i7-5500U, fifth generation CPU 2.4 GHz
with RAM 8Go and NVIDIA Ge Force 820 M. The GPU used
is of Fermi architecture with 96 CUDA cores, 2GB DDR3
and 1800 MHz device memory, where the MATLAB version
is R2017a, the Visual Studio version used is 2015 prof with
NVIDIA CUDA Toolkit 8.0.

In this paper, both C++ and MATLAB were used. These
two languages can be used alone but using both at the same
time gives more benefits. MATLAB is linked with CUDA C++
in two cases; either when MATLAB is not able to run an
existing piece of code on GPU, or when the highly optimized
libraries of CUDA is used. The acceleration process consists in
using the CUDA with .mex file. An input/output analysis and
memory allowance are achieved after creating a .mex file. In
this case, the parallel computation represented in the function
‘loop for’ is realized in the GPU and the sequential computation
is executed in the CPU. In this work, the parallelism between
the different threads in the same block was adopted by using the
shared memory. This memory allows the reduction of memory
access latency and greatly improves the GPU algorithm perfor-
mance. The results will be transmitted to the MATLAB and the
memory will be free.

The execution time of the proposed filtering method avail-
able in CPU is compared with the processing time on GPU.
Indeed, the calculated time corresponds to three phases: the first
phase consists in classifying the channels into noisier and less

noisy channels. The second step filters the EEG signals from
18 channels. Interpolation of the noisiest EEG channel by the
3D spline method on 1-minute samples is the last phase.

To justify the performance of GPU and the parallel com-
puting, the optimization rate, which measures the obtained
gain time of a parallel algorithm compared to a corresponding
sequential algorithm, is calculated as (Eq. 41):

Optimization rate (%)=100×
(

1− Parallel execution time

Sequential execution time

)
(41)

Table 10 shows the optimization rate of the proposed hybrid
filtering system. The results show that the execution time gener-
ated by CPU is significantly more important than the GPU. The
optimization rate mean reaches 47.47% when shared memory
is utilized and MATLAB is used with c-mex and CUDA.

5. CONCLUSION

In conclusion, the aim of the present paper is to provide hybrid
ocular and muscular artifact removal for multi-channel EEG of
healthy and pathological subjects. First, an RBF kernel-based
SVM classifier was used to extract the nosiest channel(s) from
the EEG multi-channel of each subject. Secondly, the hybrid
EFICA-TQWT method was applied to the remaining less noisy
channels of the EEG recording. Thirdly, the eliminated sig-
nal(s) was (were) reconstructed from the other filtered channels
by using the 3D spline interpolation technique. The perfor-
mance of the proposed hybrid method was evaluated by the cal-
culation of the MSE and SNR criteria. The results showed that
the hybrid EFICA-TQWT method with 3D spline interpolation
gave the best results compared to the EFICA-TQWT algorithm
without interpolation. Finally, a GPU implementation of the
proposed hybrid filtering system with 3D spline was performed
using CUDA and C++ with .mex file. The results showed that
the GPU implementation gave an optimization rate of 47.47%
compared to a CPU implementation.

5. DATA AVAILABILITY

The dataset 1 underlying this article will be shared on reason-
able request to the corresponding author.
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The dataset 2 underlying this article is available in EEG
database at https://doi.org/10.1177/1550059413500960.

The dataset 3 underlying this article is available in
01_tcp_ar, at https://www.isip.piconepress.com/projects/tuh_
eeg/downloads/. The dataset was derived from the Temple
University Medical Center at https://www.isip.piconepress.
com/projects/tuh_eeg/html/downloads.shtml.
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